Amelioration of behavioral deficits in a rat model of Huntington's disease by an excitotoxic lesion to the globus pallidus.
نویسندگان
چکیده
Four groups of rats, sustaining a striatal quinolinic acid (QA) lesion, a pallidal QA lesion, a combined striatal + pallidal lesion, or sham operation, were tested in spontaneous and amphetamine-induced activity, spatial navigation in a water maze, position discrimination and reversal in a wet T maze, and food manipulation. The striatal lesion markedly impaired rats' performance on the motor and cognitive tasks. In contrast, rats sustaining a bilateral lesion to the GP in addition to the striatal lesion performed similarly to sham-operated rats on the motor and cognitive tasks, although they showed a transient decrease in activity levels. Given that a similar dysfunction of basal ganglia circuitry is thought to subserve the behavioral alterations seen in QA-lesioned rats and Huntington's disease (HD) patients, the present results raise the possibility that manipulations of the external segment of the globus pallidus (the primate analogue of the rat GP) could ameliorate some of HD symptoms.
منابع مشابه
Deficits induced by quinolinic acid lesion to the striatum in a position discrimination and reversal task are ameliorated by permanent and temporary lesion to the globus pallidus: a potential novel treatment in a rat model of Huntington's disease.
Symptoms in the early stages of Huntington's disease (HD) are assumed to reflect basal ganglia circuit dysfunction secondary to degeneration of striatal projections to the external segment of the globus pallidus (GPe). The hypothesis that GPe lesion would ameliorate HD symptoms by "normalizing" the circuit's functioning was tested in a rat model of this disease. The performance of rats sustaini...
متن کاملBehavioral study of effects of mesenchymal stem cells transplant on motor deficits improvement in animal model of Huntington\'s disease
Introduction: As an inherited neurodegenerative disease, Huntington's disease is accompanied with wide neuronal degeneration in neostriatum and neocortex. Progress of the disease causes disabling clinical effects on movements, recognition and physiology of the body, and finally results in death. At this stage of knowledge we are, there is no effective therapeutic strategy for diminishing the mo...
متن کاملElectrolytic lesion of globus pallidus ameliorates the behavioral and neurodegenerative effects of quinolinic acid lesion of the striatum: a potential novel treatment in a rat model of Huntington's disease.
Bilateral electrolytic pallidal lesion ameliorated the deleterious effects of bilateral quinolinic acid (QA) lesion to the striatum on post-surgery weight, activity level, and performance in a water maze task, and reduced the extent of striatal damage. Given that the neurodegenerative and behavioral effects of QA striatal lesion are thought to mimic those seen in Huntington's disease, these res...
متن کاملA study on striatal local electrical potential changes in an animal model of Parkinson's disease
Parkinson’s disease (PD) is a neurodegenerative disorder that does not develop spontaneously in some animal species. PD can be induced experimentally in some laboratory animals including mouse, rat and horse. Globus pallidus (GP) and substantia nigra pars compacta (SNc) are damaged in patients with PD. The hallmark of PD is a progressive impaired control of movement, an alteration of autonomic ...
متن کاملLong-term functional consequences of quinolinic acid striatal lesions and their alteration following an addition of a globus pallidus lesion assessed using pharmacological magnetic resonance imaging.
The present study tested the hypothesis that lesion to the rat globus pallidus (GP) can "normalize" the functioning of the basal ganglia-thalamocortical circuits in striatal-lesioned rats by assessing the functional connectivity of these regions using functional magnetic resonance imaging (fMRI). Changes in brain activation following systemic administration of amphetamine were assessed in (1) r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Experimental neurology
دوره 186 1 شماره
صفحات -
تاریخ انتشار 2004